Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(13): 2742-2760.e12, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348501

RESUMO

The ability to discriminate sensory stimuli with overlapping features is thought to arise in brain structures called expansion layers, where neurons carrying information about sensory features make combinatorial connections onto a much larger set of cells. For 50 years, expansion coding has been a prime topic of theoretical neuroscience, which seeks to explain how quantitative parameters of the expansion circuit influence sensory sensitivity, discrimination, and generalization. Here, we investigate the developmental events that produce the quantitative parameters of the arthropod expansion layer, called the mushroom body. Using Drosophila melanogaster as a model, we employ genetic and chemical tools to engineer changes to circuit development. These allow us to produce living animals with hypothesis-driven variations on natural expansion layer wiring parameters. We then test the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input density, but not cell number, tunes neuronal odor selectivity. Simple odor discrimination behavior is maintained when the Kenyon cell number is reduced and augmented by Kenyon cell number expansion. Animals with increased input density to each Kenyon cell show increased overlap in Kenyon cell odor responses and become worse at odor discrimination tasks.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Proteínas de Drosophila/genética , Odorantes
2.
bioRxiv ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747712

RESUMO

Animals can discriminate myriad sensory stimuli but can also generalize from learned experience. You can probably distinguish the favorite teas of your colleagues while still recognizing that all tea pales in comparison to coffee. Tradeoffs between detection, discrimination, and generalization are inherent at every layer of sensory processing. During development, specific quantitative parameters are wired into perceptual circuits and set the playing field on which plasticity mechanisms play out. A primary goal of systems neuroscience is to understand how material properties of a circuit define the logical operations-computations--that it makes, and what good these computations are for survival. A cardinal method in biology-and the mechanism of evolution--is to change a unit or variable within a system and ask how this affects organismal function. Here, we make use of our knowledge of developmental wiring mechanisms to modify hard-wired circuit parameters in the Drosophila melanogaster mushroom body and assess the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input number, but not cell number, tunes odor selectivity. Simple odor discrimination performance is maintained when Kenyon cell number is reduced and augmented by Kenyon cell expansion.

3.
J Biol Chem ; 294(52): 19997-20008, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31744883

RESUMO

RNase BN, the Escherichia coli RNase Z family member, plays a limited role in tRNA metabolism, in contrast to most other organisms. However, RNase BN does act on 6S RNA, the global transcription regulator, degrading it in exponential-phase cells and maintaining it at low levels during this phase of growth. RNase BN levels decrease in stationary-phase cells, leading to elevation of 6S RNA and subsequent regulation of RNA polymerase. These findings were the first indication that RNase BN itself is growth phase-regulated. Here, we analyze the mechanism of this regulation of RNase BN. We find that RNase BN decreases in stationary phase because its mRNA becomes unstable, due primarily to its degradation by RNase E. However, in exponential-phase cells rbn mRNA is stabilized due to binding by the sRNA, GcvB, and the protein, Hfq, which reduce cleavage by RNase E. Because the amount of GcvB decreases in stationary phase, rbn mRNA is less protected and becomes increasingly unstable resulting in reduction in the amount of RNase BN. The small RNA-dependent, positive regulation of RNase BN in exponential-phase cells is the first example of this novel mechanism for RNase regulation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Exorribonucleases/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Sequência de Bases , Endorribonucleases/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Exorribonucleases/genética , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/química , Pequeno RNA não Traduzido/genética , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...